Nanoalloy catalysts for electrochemical energy conversion and storage reactions

نویسندگان

  • Shiyao Shan
  • Jin Luo
  • Jinfang Wu
  • Ning Kang
  • Wei Zhao
  • Hannah Cronk
  • Yinguang Zhao
  • Pharrah Joseph
  • Valeri Petkov
  • Chuan-Jian Zhong
چکیده

A key challenge to the exploration of electrochemical energy conversion and storage is the ability to engineer the catalyst with low cost, high activity and high stability. Existing catalysts often contain a high percentage of noble metals such as Pt and Pd. One important approach to this challenge involves alloying noble metals with other transition metals in the form of a nanoalloy, which promises not only significant reduction of noble metals in the catalyst but also enhanced catalytic activity and stability in comparison with traditional approaches. In this article, some of the recent insights into the structural and electrocatalytic properties of nanoalloy catalysts in which Pt is alloyed with a second and/or third transition metal (M/M0 1⁄4 Co, Fe, V, Ni, Ir, etc.), for electrocatalytic oxygen reduction reaction and ethanol oxidation reaction in fuel cells, and oxygen reduction and evolution reactions in rechargeable lithium-air batteries are highlighted. The correlation of the electrocatalytic properties of nanoalloys in these systems with the atomic-scale chemical/structural ordering in the nanoalloy is an important focal point of the investigations, which has significant implications for the design of low-cost, active, and durable catalysts for sustainable energy production and conversion reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale Alloying in Electrocatalysts

In electrochemical energy conversion and storage, existing catalysts often contain a high percentage of noble metals such as Pt and Pd. In order to develop low-cost electrocatalysts, one of the effective strategies involves alloying noble metals with other transition metals. This strategy promises not only significant reduction of noble metals but also the tunability for enhanced catalytic acti...

متن کامل

Atomic Ordering Enhanced Electrocatalytic Activity of Nanoalloys for Oxygen Reduction Reaction

For oxygen reduction reaction (ORR) over alloy electrocatalysts, the understanding of how the atomic arrangement of the metal species in the nanocatalysts is responsible for the catalytic enhancement is challenging for achieving better design and tailoring of nanoalloy catalysts. This paper reports results of an investigation of the atomic structures and the electrocatalytic activities of terna...

متن کامل

Metal (Ni, Co)-Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 5799 wileyonlinelibrary.com issues associated with energy security and environmental pollution. [ 1–5 ] Oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are the most crucial electrochemical reactions to realize energy storage and conversion in these technologies. Although Pt-, Ir-, and Ru-ba...

متن کامل

Nanostructured Mn-based oxides for electrochemical energy storage and conversion.

Batteries and supercapacitors as electrochemical energy storage and conversion devices are continuously serving for human life. The electrochemical performance of batteries and supercapacitors depends in large part on the active materials in electrodes. As an important family, Mn-based oxides have shown versatile applications in primary batteries, secondary batteries, metal-air batteries, and p...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014